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ABSTRACT

Membrane-bound macromolecules play an important role in tissue
architecture and cell-cell communication, and is regulated by almost
one-third of the genome. At the optical scale, one group of mem-
brane proteins expresses themselves as linear structures along the
cell surface boundaries, while others are sequestered. This paper
targets the former group, whose intensity distributions are often het-
erogeneous and may lack specificity. Segmentation of the membrane
protein enables the quantitative assessment of localization for com-
parative analysis. We introduce a three-step process to (i) regular-
ize the membrane signal through iterative tangential voting, (ii) con-
strain the location of surface proteins by nuclear features, and (iii)
assign membrane proteins to individual cells through an application
of multi-phase geodesic level-set. We have validated our method
against a dataset of 200 images, and demonstrated that multiphase
level set has a superior performance compared to gradient vector
flow snake.

Index Terms— Segmentation, multiphase levelset, membrane
proteins

1. INTRODUCTION AND MOTIVATION

Different types of cell surface proteins control and regulate cell-cell
interactions and the physical properties of tissue structure. This pa-
per focuses on the segmentation of membrane proteins that demon-
strate a diffused signal along the cell surface boundaries when im-
aged by fluorescence microscopy. For example, the cadherin family
of membrane proteins have a diffused signature, while the connexin
family of proteins are sequestered between neighboring cells. In this
paper, we use samples that are labeled for E-cadherin as a proxy for
validating computational steps for a wider class of cell surface pro-
teins. The E-, R-, and N-cadherin families of adhesion molecules are
known to regulate the dynamic properties of cell-cell adhesion. For
example, E-cadherin is a calcium-dependent cell adhesion molecule
that influences differentiation and tissue structure; it is a class of an
adherent junction between epithelial cells with access to the actin
cytoskeleton through cadherin attachment proteins. As an endpoint,
E-cadherin has been studied extensively, since it appears to func-
tion as a barrier to cancer. Loss of E-cadherin has been associ-
ated with (i) increased motility, (ii) potential cancer progression and
metastasis, and (iii) increased resistance to normal cell death. Since
down-regulation of E-cadherin is a critical endpoint for quantitative
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Fig. 1. An example of an E-cadherin signal: (a) A composite im-
age of nuclei and membrane signals; (b) The corresponding nuclear
channel; and (c) Membrane channel.

systems cell biology, detailed segmentation of the E-cadherin sig-
nal provides important clues for understanding biological processes
under different sets of experimental factors and perturbation. An
example of the localization of E-cadherin adhesion molecules for a
monolayer system is shown in Figure 1.

Even though cell-cell adhesion molecules express themselves as
linear structures, these signals suffer from perceptual gaps, nonuni-
formity in intensity and scale (e.g., thickness), and noise. The ex-
pressions of these molecules are often examined in the context of
nuclear substructures with both the nuclear and adhesion molecules
labeled with different fluorescent probes. Current literature is rich
in terms of the delineation of nuclear morphology and its shape fea-
tures [1, 2, 3, 4]; however, the segmentation of cell-cell adhesion
molecules or cell surface proteins remains largely unexplored. In
this paper, we introduce a novel method for segmentation of adhe-
sion molecules that are bound to the basal-lateral region of the cell.
These signals correspond to local linear features that delineate cell
boundaries as shown in Figure 1. Our approach is to group and en-
hance these linear structures based on continuity, and then apply an
evolving front for detailed segmentation. Our method enables the in-
ference of saliency from incomplete boundary information through
voting, perceptual grouping, and multi-phase geodesic level-set.

The organization of this paper is as follows: Section 2 pro-
vides a brief review of the previous research; Section 3 describes
our approach and details our implementation of tangential voting;
Section 4 demonstrates the experimental results; and Section 5 con-
cludes the paper.

2. REVIEW OF PREVIOUS WORK

The difficulties in the segmentation of surface protein localization
are often due to variations in scale, noise, and topology. Other com-
plexities originate from missing data and perceptual boundaries that
lead to diffusion and dispersion of the spatial grouping in the image
space. Techniques for grouping local image features into globally
salient structures have incorporated clustering and graph theoretic



Fig. 2. Computational steps in segmenting cell surface proteins.

methods [5], Bayesian models for combining tangential representa-
tions of sparse contours [6], tensor voting [7] for grouping or inter-
polating distant features, etc. While these techniques differ in their
concepts, they are model-free and share a common thread of conti-
nuity and proximity along the minimum energy path to infer global
saliency. More recently, prior shape models have also been incorpo-
rated for boundary closure [8].

In [9], an interactive method with evolving fronts was proposed
for cell segmentation. In [10], we proposed a three step strategy
based on (i) tangential voting strategy for membrane signal en-
hancement and grouping, (ii) delineating of nuclear regions through
a combination of zero-crossing and gradient filter, and (iii) snake-
based for delineating membrane-bound signal. The main limitations
are that segmentation of clumps of nuclei was exhaustive, and the
snake model of evolving front did not incorporate interactions be-
tween neighboring nuclei. These issues are being addressed in this
paper.

3. APPROACH

Figure 2 shows the computational steps in segmenting cell surface
proteins, Figure 3 gives an example for each step. Nuclear segmen-
tation provides one set of constraints for membrane segmentation.
The second set of constraints is provided through the enhancement
and regularization of cell surface protein markers. The application
of multi-phase geodesic levelset provides the final assignment of sur-
face proteins for each cell.

3.1. Delineation and quantification of the membrane-bound
macromolecules

A typical assay often provides a label for the nuclear regions (e.g., a
counter-stain). Therefore, segmentation of nuclei provides the con-
text for characterizing membrane-bound proteins. The two-step pro-
cess consists of:

1. Nuclear segmentation: Among different strategies [11, 12,
13, 14], we have adopted the method described in [11]. The
advantage of this method is that geometric constrains are di-
rectly applied to delineate clumps of nuclear regions. Thus,
facilitating analysis on a cell-by-cell basis, where the key ge-
ometric constraint is expressed in term of the convexity of the
nuclear geometry. Accordingly, when nearby nuclei overlap,
they form folds (e.g., positive curvature maxima). By iden-
tifying folds and applying Delaunay triangulation between
folds, a set of hypothesis can be generated for partitioning a
clump of cells. These hypothesese are then processed through

a constraint satisfaction network for revealing a correct parti-
tioning for each nucleus. The method is superior to an earlier
method [2], which was based on exhaustive search and did
not use Delaunay triangulation for limiting the search space.

2. Membrane signal grouping: Membrane-bound signals can
be noisy and contain perceptual gaps, as shown in Figure 1.
Therefore, the signal is regularized through tangential voting,
which has been described in our earlier paper [15]. The net
result is that evolving contour is more smooth along the cell
boundaries.

3.2. Grouping of the Membrane Signal

Our intent is to quantify membrane-bound protein localization on
a cell-by-cell basis, and the nuclear channel is used as a context in
which the segmentation problem is constrained. Here, we propose to
use multi-phase level-set framework [16, 17, 4]. Within this frame-
work, we have two principles:

1. The evolving contour (zero level-set) represents the mem-
brane for each nucleus, which means the contour must attach
to the membrane signal.

2. Each phase represents a unique cell, and different phase re-
gions ( cell regions ) do not overlap.

Based on the principles listed above, and using the Heaviside func-
tion H , and the one-dimensional Dirac measure δ, defined by

H(z) =

{
1, if z ≥ 0
0, if z < 0

, δ(z) =
dH(z)

dz

The energy form can be written as:

E = µ

M∑
i

∫

Ω

g(I)|∇Φi(x, y)|δi(x, y)dxdy

+ λ

M∑
i=1

M∑

j=1,j 6=i

∫

Ω

H(Φi)H(Φj)dxdy (1)

in which, Ω is the image domain; M is the number of nuclei; I is the
enhanced membrane image; Φ is the Lipschitz function, whose zero
level-set is designated to attach to the membrane signal; µ and λ are
constant coefficients, weighting different terms; and

g(I) =
1

1 + |∇I|p (2)

The first term is the geodesic length of the zero level-set, enforcing
the zero level-set to attach to the membrane signal; the second term
is the penalty for overlapping. The minimization of the objective
function is achieved by gradient descent based on the corresponding
Euler-Lagrange equation:

∂Φi

∂t
= δ(Φi) ·

(
µ∇g

∇Φi

|∇Φi| + µgdiv(
∇Φi

|∇Φi| )
)

− δ(Φi) · λ ·
M∑

j=1,j 6=i

H(Φj) (3)

To discretize the equation: let h be the space step, ∆t be the time
step, and (xp, yq) = (ph, qh) be the grid points. The finite differ-
ences are:

∆x
+Φ(p, q) = Φ(p + 1, q)− Φ(p, q)

∆x
−Φ(p, q) = Φ(p, q)− Φ(p− 1, q)

∆y
+Φ(p, q) = Φ(p, q + 1)− Φ(p, q)

∆y
−Φ(p, q) = Φ(p, q)− Φ(p, q − 1)
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Fig. 3. Computational steps in the assignment of cell surface pro-
tein markers to each nucleus: (a) original nuclear regions; (b) seg-
mented nuclear features; (c) original cell surface marker; (d) voted
cell surface proteins; (e) composite image of both nuclear channel
and membrane channel; (f) segmentation of cell surface protein.

We compute Φn+1 by the following discretization:

Φn+1
i − Φn

i

∆t
= δh(Φn

i )


 µ

h2

∆x
+g∆x

+Φn
i√

(∆x
+Φn

i )2

h2 +
(∆

y
+Φn

i )2

h2




+ δh(Φn
i )


 µ

h2

∆y
+g∆y

+Φn
i√

(∆x
+Φn

i )2

h2 +
(∆

y
+Φn

i )2

h2




+ δh(Φn
i )


µg

h2
∆x

+


 ∆x

+Φn
i√

(∆x
+Φn

i )2

h2 +
(∆

y
+Φn

i )2

h2







+ δh(Φn
i )


µg

h2
∆y

+


 ∆y

+Φn
i√

(∆x
+Φn

i )2

h2 +
(∆

y
+Φn

i )2

h2







− δh(Φn
i ) · λ ·

M∑

j=1,j 6=i

H(Φn
j ) (4)

4. EXPERIMENTAL RESULTS

An experiment has been designed and images have been collected to
validate the performance of the method. In this experiment, samples
are labeled with a counter-stain to visualize nuclear features, and
with an antibody against the E-cadherin for visualizing cell surface
proteins. A total of 201 images were collected, nuclear regions were
segmented, and an E-cadherin signal was assigned to each nuclear
region. The parameters are fixed for the entire data set at µ = 100,
λ = 5, ∆t = 0.1, and iteration = 100. Figures 4 shows one

example of our experimental result, various processing steps, and
comparison with an earlier method based on GVF snake [18]. The
GVF snake has the property that its evolution can stop due to absence
of attracting forces. Several cells in Figure 4 have this property. In
addition, Figure 4 shows intermediate results of tangential voting
for smoothing the membrane-bound signal [15]. Tangential voting
regularizes the membrane-bound signal through enhancement, noise
reduction, and gap filling of small regions. In our experimental data
set, the quality of segmentation for the membrane-bound protein is
nearly perfect, and any erroneous segmentation is due to incorrect
nuclear segmentation. Sometimes, during the sample preparation
and fixation, nuclear regions overlap and form large clumps; this is
a quality control issue associated with sample preparation, and in
these cases, even with correct segmentation of the nuclear regions,
membrane-bound signals are meaningless, since it is not clear which
nuclei they are associated with.

5. CONCLUSION AND FUTURE WORK

A series of computational steps are proposed and tested on real data
to delineate cell surface proteins. Cell surface proteins are heteroge-
nous in width and suffer from perceptual gaps. A multi-step process
is proposed to segment membrane proteins and assign them to indi-
vidual cells. First iterative tangential voting is applied to enhance
and regularize membrane proteins while diffusing noise. Next, the
nuclear segmentation provides context and the necessary reference
for initializing the evolving fronts for quantifying membrane-bound
signal on the cell-by-cell basis. Finally, the GVF snake is replaced
with the multi-phase geodesic level-set model for improved perfor-
mance and geometric stability. Our main contribution is to build the
robust pipeline for delineating and capturing membrane-bound sig-
nal on cell-by-cell basis. Our current plan is to utilize this technology
for understanding a number of biological processes.
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